Что называется полезной мощностью и кпд аккумуляторной батареи?

КПД источника тока

В процессе перемещения зарядов внутри замкнутой цепи, источником тока совершается определенная работа. Она может быть полезной и полной. В первом случае источник тока перемещает заряды во внешней цепи, совершая при этом работу, а во втором случае – заряды перемещаются во всей цепи. В этом процессе большое значение имеет КПД источника тока, определяемого, как соотношение внешнего и полного сопротивления цепи. При равенстве внутреннего сопротивления источника и внешнего сопротивления нагрузки, половина всей мощности будет потеряна в самом источнике, а другая половина выделится на нагрузке. В этом случае коэффициент полезного действия составит 0,5 или 50%.

КПД электрической цепи

Рассматриваемый коэффициент полезного действия в первую очередь связан с физическими величинами, характеризующими скорость преобразования или передачи электроэнергии. Среди них на первом месте находится мощность, измеряемая в ваттах. Для ее определения существует несколько формул: P = U x I = U2/R = I2 x R.

В электрических цепях может быть различное значение напряжения и величина заряда, соответственно и выполняемая работа тоже отличается в каждом случае. Очень часто возникает необходимость оценить, с какой скоростью передается или преобразуется электроэнергия. Эта скорость представляет собой электрическую мощность, соответствующую выполненной работе за определенную единицу времени. В виде формулы данный параметр будет выглядеть следующим образом: P=A/∆t. Следовательно, работа отображается как произведение мощности и времени: A=P∙∆t. В качестве единицы измерения работы используется джоуль (Дж).

Для того чтобы определить, насколько эффективно какое-либо устройство, машина электрическая цепь или другая аналогичная система, в отношении мощности и работы используется КПД – коэффициент полезного действия. Данная величина определяется как отношение полезно израсходованной энергии, к общему количеству энергии, поступившей в систему. Обозначается КПД символом η, а математически определяется в виде формулы: η = A/Q x 100% = [Дж]/[Дж] х 100% = [%], в которой А – работа выполненная потребителем, Q – энергия, отданная источником. В соответствии с законом сохранения энергии, значение КПД всегда равно или ниже единицы. Это означает, что полезная работа не может превышать количество энергии, затраченной на ее совершение.

Таким образом, определяются потери мощности в какой-либо системе или устройстве, а также степень их полезности. Например, в проводниках потери мощности образуются, когда электрический ток частично превращается в тепловую энергию. Количество этих потерь зависит от сопротивления проводника, они не являются составной частью полезной работы.

Существует разница, выраженная формулой ∆Q=A-Q, наглядно отображающей потери мощности. Здесь очень хорошо просматривается зависимость между ростом потерь мощности и сопротивлением проводника. Наиболее ярким примером служит лампа накаливания, КПД у которой не превышает 15%. Остальные 85% мощности превращаются в тепловое, то есть в инфракрасное излучение.

Что такое КПД источника тока

Рассмотренный коэффициент полезного действия всей электрической цепи, позволяет лучше понять физическую суть КПД источника тока, формула которого также состоит из различных величин.

В процессе перемещения электрических зарядов по замкнутой электрической цепи, источником тока выполняется определенная работа, которая различается как полезная и полная. Во время совершения полезной работы, источника тока перемещает заряды во внешней цепи. При полной работе, заряды, под действием источника тока, перемещаются уже по всей цепи.

В виде формул они отображаются следующим образом:

  • Полезная работа — Аполез = qU = IUt = I2Rt.
  • Полная работа – Аполн = qε = Iεt = I2(R +r)t.

На основании этого, можно вывести формулы полезной и полной мощности источника тока:

  • Полезная мощность – Рполез = Аполез /t = IU = I2R.
  • Полная мощность – Рполн = Аполн/t = Iε = I2(R + r).

В результате, формула КПД источника тока приобретает следующий вид:

  • η = Аполез/ Аполн = Рполез/ Рполн = U/ε = R/(R + r).

Максимальная полезная мощность достигается при определенном значении сопротивления внешней цепи, в зависимости от характеристик источника тока и нагрузки. Однако, следует обратить внимание на несовместимость максимальной полезной мощности и максимального коэффициента полезного действия.

Исследование мощности и КПД источника тока

Коэффициент полезного действия источника тока зависит от многих факторов, которые следует рассматривать в определенной последовательности.

Для определения величины тока в электрической цепи, в соответствии с законом Ома, существует следующее уравнение: i = E/(R + r), в котором Е является электродвижущей силой источника тока, а r – его внутренним сопротивлением. Это постоянные величины, которые не зависят от переменного сопротивления R. С их помощью можно определить полезную мощность, потребляемую электрической цепью:

  • W1 = i x U = i2 x R. Здесь R является сопротивлением потребителя электроэнергии, i – ток в цепи, определяемый предыдущим уравнением.

Таким образом, значение мощности с использованием конечных переменных будет отображаться в следующем виде: W1 = (E2 x R)/(R + r).

Поскольку сила тока представляет собой промежуточную переменную, то в этом случае функция W1(R) может быть проанализирована на экстремум. С этой целью нужно определить значение R, при котором величина первой производной полезной мощности, связанная с переменным сопротивлением (R) будет равной нулю: dW1/dR = E2 x [(R + r)2 – 2 x R x (R + r)] = E2 x (Ri + r) x (R + r – 2 x R) = E2(r – R) = 0 (R + r)4 (R + r)4 (R + r)3

Из данной формулы можно сделать вывод, что значение производной может быть нулевым лишь при одном условии: сопротивление приемника электроэнергии (R) от источника тока должно достичь величины внутреннего сопротивления самого источника (R => r). В этих условиях значение коэффициента полезного действия η будет определяться как соотношение полезной и полной мощности источника тока – W1/W2. Поскольку в максимальной точке полезной мощности сопротивление потребителя энергии источника тока будет таким же, как и внутреннее сопротивление самого источника тока, в этом случае КПД составит 0,5 или 50%.

Задачи на мощность тока и КПД

Первый в России прототип квантового компьютера заработал в НИТУ «МИСиС»

В НИТУ «МИСиС» заработал первый в России прототип квантового компьютера. Устройство на двух кубитах выполнило заданный алгоритм, превысив ранее известный предел точности на 3%. В качестве основы для кубитов были взяты сверхпроводящие материалы.

Работы по созданию квантового компьютера в рамках проекта Фонда перспективных исследований ведутся в НИТУ «МИСиС» с 2016 года под руководством Валерия Рязанова, главного научного сотрудника Лаборатории сверхпроводящих метаматериалов университета. Конструкция предполагает использование в качестве основы для кубитов сверхпроводящих материалов.

Полная и полезная мощность. Коэффициент полезного действия (к. п. д. )

Мощность, развиваемая источником тока во всей цепи, называется полной мощностью.

Она определяется по формуле

где Pоб-полная мощность, развиваемая источником тока во всей цепи, вт;

Е- э. д. с. источника, в;

I-величина тока в цепи, а.

В общем виде электрическая цепь состоит из внешнего участка (нагрузки) с сопротивлением R и внутреннего участка с сопротивлением R (сопротивлением источника тока).

Заменяя в выражении полной мощности величину э. д. с. через напряжения на участках цепи, получим

Величина UI соответствует мощности, развиваемой на внешнем участке цепи (нагрузке), и называется полезной мощностью Pпол=UI.

Величина UoI соответствует мощности, бесполезно расходуемой внутри источника, Ее называют мощностью потерь Po=UoI.

Таким образом, полная мощность равна сумме полезной мощности и мощности потерь Pоб=Pпол+P0.

Отношение полезной мощности к полной мощности, развиваемой источником, называется коэффициентом полезного действия, сокращенно к. п. д.,и обозначается η.

Из определения следует

При любых условиях коэффициент полезного действия η ≤ 1.

Если выразить мощности через величину тока и сопротивления участков цепи, получим

Таким образом, к. п. д. зависит от соотношения между внутренним сопротивлением источника и сопротивлением потребителя.

Обычно электрический к. п. д. принято выражать в процентах.

Для практической электротехники особый интерес представляют два вопроса:

1. Условие получения наибольшей полезной мощности

2. Условие получения наибольшего к. п. д.

Условие получения наибольшей полезной мощности (мощности в нагрузке)

Наибольшую полезную мощность( мощность на нагрузке) электрический ток развивает в том случае, если сопротивление нагрузки равно сопротивлению источника тока.

Эта наибольшая мощность равна половине всей мощности (50%) развиваемой источником тока во всей цепи.

Половина мощности развивается на нагрузке и половина развивается на внутреннем сопротивлении источника тока.

Читать еще:  Что такое полезное ископаемое и пустая порода?

Если будем уменьшать сопротивление нагрузки, то мощность развиваемая на нагрузке будет уменьшаться а мощность развиваемая на внутреннем сопротивлении источника тока будет увеличиваться.

Если сопротивление нагрузки равно нулю то ток в цепи будет максимальным, это режим короткого замыкания (КЗ). Почти вся мощность будет развивается на внутреннем сопротивлении источника тока. Этот режим опасен для источника тока а также для всей цепи.

Если сопротивление нагрузки будем увеличивать, то ток в цепи будет уменьшатся, мощность на нагрузке также будет уменьшатся. При очень большом сопротивлении нагрузки тока в цепи вообще не будет. Это сопротивление называется бесконечно большим. Если цепь разомкнута то ее сопротивление бесконечно большое. Такой режим называется режимом холостого хода.

Таким образом, в режимах, близких к короткому замыканию и к холостому ходу, полезная мощность мала в первом случае за счет малой величины напряжения, а во втором за счет малой величины тока.

Условие получения наибольшего к. п. д коэффициента полезного действия

Коэффициент полезного действия (к. п. д.) равен 100% при холостом ходе ( в этом случае полезная мощность не выделяется, но в то же время и не затрачивается мощность источника).

По мере увеличения тока нагрузки к. п. д. уменьшается по прямолинейному закону.

В режиме короткого замыкания к. п. д. равен нулю ( полезной мощности нет, а мощность развиваемая источником, полностью расходуется внутри него).

Подводя итоги вышеизложенному, можно сделать выводы.

Условие получения максимальной полезной мощности( R=R) и условие получения максимального к. п. д. (R=∞) не совпадают. Более того, при получении от источника максимальной полезной мощности ( режим согласованной нагрузки) к. п. д.составляет 50%, т.е. половина развиваемой источником мощности бесполезно затрачивается внутри него.

В мощных электрических установках режим согласованной нагрузки является неприемлемым, так как при этом происходит бесполезная затрата больших мощностей. Поэтому для электрических станций и подстанций режимы работы генераторов, трансформаторов, выпрямителей рассчитываются так, чтобы обеспечивался высокий к. п. д. ( 90% и более).

Иначе обстоит дело в технике слабых токов. Возьмем, например, телефонный аппарат. При разговоре перед микрофоном в схеме аппарата создается электрический сигнал мощностью около 2 мвт. Очевидно, что для получения наибольшей дальности связи необходимо передать в линию как можно большую мощность, а для этого требуется выполнить режим согласованного включения нагрузки. Имеет ли в данном случае существенное значение к. п. д.? Конечно нет, так как потери энергии исчисляются долями или единицами милливатт.

Режим согласованной нагрузки применяется в радиоаппаратуре. В том случае, когда согласованный режим при непосредственном соединении генератора и нагрузки не обеспечивается, применяют меры согласования их сопротивлений.

Справочник химика 21

Химия и химическая технология

Аккумуляторы коэффициент полезного действия

Свинцовый аккумулятор отличается большим коэффициентом полезного действия, сравнительно большой электродвижущей силой, которая мало изменяется при разрядке. Свинцовый аккумулятор нашел широкое применение в различных подвижных уст ройствах — автомобилях, электрокарах, железнодорожных поездах, подводных лодках и др. [c.345]

Железо-никелевый аккумулятор Эдисона, в противоположность свинцовому, хорошо переносит перегрузки и долгое стояние в заряженном состоянии. Благодаря этому, а также малому весу, он часто применяется вместо свинцового для обслуживания передвижных установок. Его напряжение на клеммах при разрядке составляет приблизительно 1,3 в, при зарядке 1,7 в. Вследствие значительной разницы между зарядным и разрядным напряжением он не обладает хорошим коэффициентом полезного действия поэтому для больших стационарных установок обычно пользуются свинцовым аккумулятором. [c.390]

Расчет коэффициента полезного действия по энергии. Коэффициент полезного действия может быть рассчитан графически. Для этого строятся графики для разрядки и зарядки аккумулятора в координатах э. д. с.— время, при постоянстве силы зарядного и разрядного тока. Площадь, ограниченная осями координат и кривой, прямо пропорциональна количеству электрической энергии, затраченной соответственно при разрядке и зарядке аккумулятора. Коэффициент полезного действия по энергии равен отношению обеих площадей. [c.110]

Недостатками щелочных аккумуляторов являются меньший коэффициент полезного действия по сравнению со свинцовыми, меньшая величина э.д.с., а также меньшая емкость. Напомним, что емкость аккумулятора выражается в ампер-часах и определяется тем наибольшим количеством электричества, которое можно получить от заряженного аккумулятора. [c.272]

В отличие от свинцового (X 5 доп. 8), щелочной аккумулятор хорошо выдерживает перегрузку и длительное пребывание в разряженном состоянии. Благодаря этому, а также сравнительно малому весу и большей устойчивости по отношению к сотрясениям, он часто применяется для обслуживания различных передвижных установок. Основным недостатком щелочного аккумулятора является его значительно меньший коэффициент полезного действия. Поэтому для больших стационарных установок предпочтительнее свинцовый аккумулятор. [c.448]

Любой обратимый элемент в принципе может служить аккумулятором, но технически приемлемым оказалось лишь очень ограниченное их число. Аккумуляторы должны иметь большую емкость энергии на единицу веса и объема, отличаться большим коэффициентом полезного действия и удовлетворять ряду других требований. [c.110]

Таким образом, первой и основной особенностью топливных элементов является возможность непосредственного преобразования химической энергии в электрическую с высоким коэффициентом полезного действия. Следует указать, что эта особенность, так же как и все изложенные выше термодинамические закономерности, относится не только к топливным элементам, но и к химическим источникам тока обычного типа —гальваническим элементам и аккумуляторам. В них, как это уже отмечалось ранее, также осуществляется прямое преобразование химической энергии активных веществ в электрическую энергию. Топливные элементы отличаются от обычных гальванических элементов и аккумуляторов тем, что в них компоненты реакции (топливо и окислитель) не заложены заранее в состав электродов, а непрерывно подаются к электродам в процессе работы. Поэтому они могут работать непрерывно и сколь угодно длительно, пока осуществляется подвод реагентов и отвод [c.490]

Первой и основной особенностью топливных элементов является возможность непосредственного преобразования химической энергий в электрическую с высоким коэффициентом полезного действия. Следует указать, что эта особенность, так же как и все изложенные выше термодинамические закономерности, относится не только к топливным элементам, но и к химическим источникам тока обычного типа — гальваническим элементам и аккумуляторам. В них, как это уже отмечалось ранее, также осуществляется прямое преобразование химической энергии активных веществ в электрическую [c.547]

При меньшем коэффициенте полезного действия и при меньшем напряжении железо-никелевые аккумуляторы имеют ряд преимуществ. Так, они требуют меньшего ухода и менее прихотливы, их способность к саморазряду весьма мала. Железо-никелевые аккумуляторы обладают также очень прочной конструкцией и выдерживают более сильную тряску и толчки, чем свинцовые аккумуляторы. Они очень легки, но мощность их не превышает 30 ватт на 1 кг веса аккумулятора. Для обслуживания транспорта железо-никелевые аккумуляторы имеют значительные преимущества. [c.406]

Устройство, изготовленное по схеме, изображенной на рис. 188, имеет коэффициент полезного действия 24—27%. В настоящее время подобные устройства для заряда серебряно-цинковых аккумуляторов выпускаются промышленностью. [c.362]

Данное устройство из-за сложности коммутации больших токов имеет смысл применять лишь для заряда аккумуляторов емкостью не более 5 а-ч. Коэффициент полезного действия устройства лежит в пределах 20—25%. [c.363]

Щелочные аккумуляторы. Щелочные аккумуляторы в некоторых случаях являются более удобными, чем свинцовые. Срок службы их больше, чем у свинцовых. Они более стойки к толчкам и тряске. Разряжать их можно токами большой силы и они даже не боятся кратковременного короткого замыкания. На продолжительное время их можно оставлять в разряженном состоянии. Однако щелочные аккумуляторы имеют меньшую электродвижущую силу и меньший коэффициент полезного действия. В практике нашли применение два вида щелочных аккумуляторов кадмиево-никелевые и железоникелевые. Обычно они укомплектованы из батарей, содержащих от трех до тридцати двух банок. [c.110]

В отношении аккумуляторов не привилось понятие коэффициент полезного действия . Общепринят термин отдача аккумулятора . Правилами Американского института инженеров-электри-ков понятие отдача трактуется следующим образом отдача аккумулятора — отношение количества энергии, отдаваемого аккумулятором, к получаемому количеству энергии, необходимому для восстановления первоначального состояния заряда при заданных температуре, токе и конечном напряжении. [c.54]

Одним из недостатков свинцового аккумулятора является его относительно большая тяжесть. Поэтому в ряде случаев используют более легкие аккумуляторы, например железо-никелевые, которые относятся к щелочным (электролитом является раствор щелочи, обычно КОН). Щелочные аккумуляторы в отличие от свинцовых не боятся толчков и встряхиваний, хорошо переносят длительное пребывание в разряженном состоянии. Однако щелочные аккумуляторы обладают и некоторыми недостатками у них меньший коэффициент полезного действия по сравнению со свинцовым, меньшая величина э. д. с., а также меньшая емкость. Напомним, что емкость аккумулятора выражается в ампер-часах и определяется тем наибольшим количеством электричества, которое можно получить от заряженного аккумулятора. [c.324]

Расчет коэффициента полезного действия по току. Коэффициент полезного действия аккумулятора представляет собой отношение количества электричества, полученного при разрядке (Эх, к количеству электричества Q 2, пошедшего на зарядку [c.109]

Читать еще:  Чем полезна фолиевая кислота для женщин до беременности

Если во время процессов разрядки и зарядки аккумулятора сила тока оставалась строго постоянной, то коэффициент полезного действия равен отношению времени разрядки ко времени зарядки Та [c.109]

Щелочные аккумуляторы имеют ряд преимуществ перед свинцовыми. Срок службы их больше, чем свинцовых. Они обладают высокой механической прочностью и не боятся встряхиваний и толчков, хорошо выдерживают перевозку и длительное пребывание в разряженном состоянии. Однако щелочные аккумуляторы обладают и некоторыми недостатками они имеют меньший коэффициент полезного действия по сравнению со свинцовым, меньшую величину э. д. с., и емкость их на единицу веса меньше, чем у свинцовых аккумуляторов. [c.254]

В первой серии испытаний проводилось непрерывное циклирование опытных аккумуляторов с определением их электрических показателей. Было установлено, что добавка сульфата кобальта уменьшает среднее зарядное напряжение, снижая в то же время емкость и коэффициент полезного действия аккумулятора. Это видно из рис. 1, где представлены опытные значения отдачи аккумулятора но току (Ат ) и по энергии (Ад), в зависимости от концентрации добавки. При этом за 100% приняты соответствующие величины, относящиеся к контрольному аккумулятору (без добавки). [c.549]

Исследовано влияние сульфата кобальта на стойкость решеток положительных пластин свинцового аккумулятора, на его емкость, коэффициент полезного действия и на сохранность древесных сепараторов. Изучена также роль этой добавки при течении различных стадий электродного процесса как на положительной, так и на отрицательной пластинах. [c.557]

Химическая энергия используется в гальванических элементах и аккумуляторах. Эти источники энергии, при дальнейшем усовершенствовании методов их производства, могут представить значительный интерес, так как по теоретическим соображениям можно рассчитывать на высокий коэффициент их полезного действия (к.п.д.), особенно в случаях обратимых реакций. Например, если бы удалось реализовать в гальванических элементах обратимое окисление угля, то к.п.д. по электроэнергии такого процесса мог бы достигнуть 65—70%. Для сравнения укажем, что к.п.д. парового двигателя с высоким перегревом пара не превышает 28—30%, а двигателя внутреннего сгорания — 35%. [c.116]

Основным показателе.м ХИТ является разрядная кривая — зависи,мость напряжения от количества пропущенного электричества Q или, при разряде постояннее силой тока, от времени. Для акку. улятора характеристикой является и аналогичная зарядная кривая. Типичные зарядные и разрядные кривые для свинцового акку.мулятора представлены на рнс. 16.1. По мере разряда напряжение падает (общее перенапряжение элемента растет). Разряд проводят,до определенного конечного напряжения екон-Общее количество электричества, которое можно получить до достижения этого напряжения, называют разрядной е.мкостью данного ХИТ. Произведение емкости на среднее разрядное напряжение—энергозапас данного ХИТ. Основными эксплуатационными показателями ХИТ являются удельная энергия на единицу массы или объема, максимальная удельная. мощность, сохраняемость (для первичных элементов), ресурс— допустимое число зарядно-разрядных циклов, а также коэффициент полезного действия по энергии — отношение энергии, полученной прн разряде и затраченной при заряде (для аккумуляторов), срок службы, температурный интервал работоспособности, механическая прочность, невыливаемость электролита и г. д. [c.308]

Весьма ценным может быть изотоп Се в качестве источника питания для электрогенераторов. Проблема непосредственного преобразования энергии радиоактивных излучений в электричество сейчас исследуется очень интенсивно. Задача состоит прежде всего в разработке термоэлектронных преобразователей (полупроводников) и в подборе источника радиоактивного излучения. Уже сконструирован карманный атомный генератор, вес которого 2,25 кг, ширина 11,4 см, высота 14 см. Источник питания — изотои Ро , термонреобразователь — теллурид свинца. Коэффициент полезного действия этого генератора составляет 8—10%, а мощность равна 5 вт. Он может заменять аккумуляторы весом 660 кг. Недостатком его является очень высокая цена и сильная радиоактивность Ро21 . [c.215]

Было показано, что молекулы мышечного белка акта-миозина способны изменять свою длину непосредственно за счет химической энергии, выделяющейся при отщеплении остатка фосфорной кислоты от молекулы АТФ. т. е. этот процесс обусловливает сократительную деятельность мышц. Таким образом, система АТФ — белок играет роль аккумулятора химической энергии в орга> ннзме. Накопленная химическая энергия по мере надобности превращается при помощи белка актомиозина непосредственно в механическую энергию, без промежуточного перехода в тепловую энергию. Для этого процесса характерен весьма высокий коэффициент полезного действия (приблизительно 50%), чем мышца существенно отличается от используемых в современной технике тепловых машин. В тепловых машинах механическая работа совершается за счет химической энергии топлива через стадию перехода в тепло с соответственно более низким коэффициентом полезного действия (20—30%). [c.453]

В настоящее время промышленностью серийно выпускается большое количество разнообразных универсальных и специализированных зарядных устройств. Наиболее распространенными устройствами, применяемыми для заряда аккумуляторных батарей, являются выпрямительные, представляющие собой диод, преобразующий переменный ток в постоянный. Преобразование обусловлено малым со-протпвлением диода в одном направлении и большим или бесконечно большим сопротивлением протеканию электрического тока в другом направлении. Такой метод выпрямления дает в результате пульсирующий ток, который может быть применен для заряда аккумуляторов без сглаживания пульсации. Полупроводниковые выпрямители имеют ряд существенных преимуществ по сравнению с генераторами постоянного тока и ртутными выпрямителями отсутствие накальных цепей, бесшумность в работе, высокий коэффициент полезного действия, комплектность, длительный срок службы и т. д. Наиболее широкое применение в технике нашли селеновые, кремниевые и германиевые выпрямители. [c.121]

Железо-никелевый (щелочной) аккумулятор Эдиссона (19(Ю) имеет меньшую разрядную э. д. с. (1,2 в) и меньший коэффициент полезного действия (50% против 80% у свинцового аккумулятора), но он очень легок, обладает большей прочностью и менее склонен к саморазряду. [c.228]

Из большого числа веш еств, испытанных до настояш его времени в качестве ингибирующих добавок к электролиту свинцовых аккумуляторов, более или менее эффективным оказался лишь сульфат кобальта. В литературе имеются указания [1, 2] на то, что введение сульфата кобальта снижает зарядное напряжение и повышает срок службы свинцовосурьмянистых пластин, а, следовательно, срок службы свинцового аккумулятора, В то же время характер влияния Со304 на другие показатели аккумулятора или не получил почти никакого освещения, или же оценивается разными авторами различно. Так, например, нет данных о влиянии сульфата кобальта на емкость и коэффициент полезного действия свинцового аккумулятора весьма противоречивы высказывания о причинах снижения зарядного напряжения в присутствии сульфата кобальта — неизвестно, обусловлено., ли оно изменением потенциала какой-либо одной из пластин [положительной (1) или отрицательной (2)] или же является некоторым суммарным результатом. Точно так н Смотреть страницы где упоминается термин Аккумуляторы коэффициент полезного действия: [c.61] [c.112] [c.171] [c.162] Практикум по теоретической электрохимии (1954) — [ c.40 , c.41 ]

Что называется полезной мощностью и кпд аккумуляторной батареи?

ЛАБОРАТОРНАЯ РАБОТА № 3.7.

ИССЛЕДОВАНИЕ ПОЛЕЗНОЙ МОЩНОСТИ И КПД ИСТОЧНИКОВ ТОКА

Фамилия И.О. _____________ Группа ______ Дата ______

Цель данной работы – экспериментально проверить теоретические выводы о зависимости полезной мощности и КПД источника тока от сопротивления нагрузки.

Электрическая цепь состоит из источника тока, подводящих проводов и нагрузки или потребителя тока. Каждый из этих элементов цепи обладает сопротивлением.

Сопротивление подводящих проводов обычно бывает очень мало, поэтому им можно пренебречь. В каждом участке цепи будет расходоваться энергия источника тока. Весьма важное практическое значение имеет вопрос о целесообразном расходовании электрической энергии.

Полная мощность Р, выделяемая в цепи, будет слагаться из мощностей, выделяемых во внешней и внутренней частях цепи: P = I 2 ·R + I 2 ·r = I 2 (R + r). Так как I(R + r) = ε, то Р =I·ε,

где R – внешнее сопротивление; r – внутреннее сопротивление; ε – ЭДС источника тока.

Таким образом, полная мощность, выделяемая в цепи, выражается произведением силы тока на ЭДС элемента. Эта мощность выделяется за счет каких-либо сторонних источников энергии; такими источниками энергии могут быть, например, химические процессы, происходящие в элементе.

Рассмотрим, как зависит мощность, выделяемая в цепи, от внешнего сопротивления R, на которое замкнут элемент. Предположим, что элемент данной ЭДС и данного внутреннего сопротивления r замыкается внешним сопротивлением R; определим зависимость от R полной мощности Р, выделяемой в цепи, мощности Ра, выделяемой во внешней части цепи и КПД.

Сила тока I в цепи выражается по закону Ома соотношением

Полная мощность, выделяемая в цепи, будет равна

При увеличении R мощность падает, стремясь асимптотически к нулю при неограниченном увеличении R.

Мощность, выделяющаяся во внешней части цепи, равна

Отсюда видно, что полезная мощность Ра равна нулю в двух случаях – при R = 0 и R = ∞.

Исследуя функцию Ра = f(R) на экстремум, получим, что Ра достигает максимума при R = r, тогда

Чтобы убедится в том, что максимум мощности Ра получается при R = r, возьмем производную Ра по внешнему сопротивлению

По условию максимума требуется равенство нулю первой производной

r 2 = R 2

R = r

Можно убедиться, что при этом условии мы получим максимум, а не минимум для Ра, определив знак второй производной .

Читать еще:  Чай из кориандра польза и вред

Коэффициент полезного действия (КПД) η источника ЭДС это величина отношения мощности Ра, выделяющейся во внешней цепи, к полной мощности Р, развиваемой источником ЭДС.

В сущности КПД источника ЭДС указывает, какая доля работы сторонних сил преобразуется в электрическую энергию и отдается во внешнюю цепь.

Выражая мощность через силу тока I, разность потенциалов во внешней цепи U и величину электродвижущей силы ε, получим

То есть КПД источника ЭДС равен отношению напряжения во внешней цепи к ЭДС. В условиях применимости закона Ома можно далее заменить U = IR; ε = I(R + r), тогда

Следовательно, в том случае, когда вся энергия расходуется на Ленц-Джоулево тепло, КПД источника ЭДС равен отношению внешнего сопротивления к полному сопротивлению цепи.

При R = 0 имеем η = 0. С увеличением R, КПД возрастает, стремится к значению η=1 при неограниченном увеличении R, однако при этом мощность, выделяющаяся во внешней цепи, стремится к нулю. Таким образом, требования одновременного получения максимальной полезной мощности при максимальном КПД невыполнимы.

Когда Ра достигает максимума, то η = 50%. Когда же КПД η близок к единице, полезная мощность мала по сравнению с максимальной мощностью, которую мог бы развивать данный источник. Поэтому для увеличения КПД необходимо по возможности уменьшать внутреннее сопротивление источника ЭДС, например, аккумулятора или динамо-машины.

В случае R = 0 (короткое замыкание) Ра = 0 и вся мощность выделяется внутри источника. Это может привести к перегреву внутренних частей источника и выводу его из строя. По этой причине короткие замыкания источников (динамо-машины, аккумуляторные батареи) недопустимы!

На рис. 1 кривая 1 дает зависимость мощности Ра, выделяемой во внешней цепи, от сопротивления внешней части цепи R; кривая 2 дает зависимость от R полной мощности Р; кривая 3 – ход КПД η от того же внешнего сопротивления.

Порядок выполнения работы

1. Ознакомиться со схемой на стенде.

2. Установить с помощью магазина сопротивление R = 100 Ом.

3. Замкнуть ключ К.

4. Произвести измерения силы тока в цепи последовательно для различных девяти сопротивлений на магазине сопротивлений, начиная от 100 Ом и выше. Внести в таблицу результаты измерений силы тока, выразив их в амперах.

5. Выключить ключ К.

6. Вычислить для каждого сопротивления Р, Ра (в ваттах) и η.

7. Построить графики Р, Ра и η от R.

1. Что называется КПД источника ЭДС?

2. Вывести формулу КПД источника ЭДС.

3. Что такое полезная мощность источника ЭДС?

4. Вывести формулу полезной мощности источника ЭДС.

5. Чему равна максимальная мощность, выделяемая во внешней цепи (Ра)max?

6. При каком значении R полная мощность Р, выделяющаяся в цепи, максимальна?

7. Чему равен КПД источника ЭДС при (Ра)max?

8. Произвести исследование функции (Ра) = f(R) на экстремум.

9. Зарисовать график зависимости Р, Ра и η от внешнего сопротивления R.

10. Что такое ЭДС источника?

11. Почему сторонние силы должны быть не электрического происхождения?

12. Почему недопустимо короткое замыкание для источников напряжения?

КПД источника тока

В процессе перемещения зарядов внутри замкнутой цепи, источником тока совершается определенная работа. Она может быть полезной и полной. В первом случае источник тока перемещает заряды во внешней цепи, совершая при этом работу, а во втором случае – заряды перемещаются во всей цепи. В этом процессе большое значение имеет КПД источника тока, определяемого, как соотношение внешнего и полного сопротивления цепи. При равенстве внутреннего сопротивления источника и внешнего сопротивления нагрузки, половина всей мощности будет потеряна в самом источнике, а другая половина выделится на нагрузке. В этом случае коэффициент полезного действия составит 0,5 или 50%.

КПД электрической цепи

Рассматриваемый коэффициент полезного действия в первую очередь связан с физическими величинами, характеризующими скорость преобразования или передачи электроэнергии. Среди них на первом месте находится мощность, измеряемая в ваттах. Для ее определения существует несколько формул: P = U x I = U2/R = I2 x R.

В электрических цепях может быть различное значение напряжения и величина заряда, соответственно и выполняемая работа тоже отличается в каждом случае. Очень часто возникает необходимость оценить, с какой скоростью передается или преобразуется электроэнергия. Эта скорость представляет собой электрическую мощность, соответствующую выполненной работе за определенную единицу времени. В виде формулы данный параметр будет выглядеть следующим образом: P=A/∆t. Следовательно, работа отображается как произведение мощности и времени: A=P∙∆t. В качестве единицы измерения работы используется джоуль (Дж).

Для того чтобы определить, насколько эффективно какое-либо устройство, машина электрическая цепь или другая аналогичная система, в отношении мощности и работы используется КПД – коэффициент полезного действия. Данная величина определяется как отношение полезно израсходованной энергии, к общему количеству энергии, поступившей в систему. Обозначается КПД символом η, а математически определяется в виде формулы: η = A/Q x 100% = [Дж]/[Дж] х 100% = [%], в которой А – работа выполненная потребителем, Q – энергия, отданная источником. В соответствии с законом сохранения энергии, значение КПД всегда равно или ниже единицы. Это означает, что полезная работа не может превышать количество энергии, затраченной на ее совершение.

Таким образом, определяются потери мощности в какой-либо системе или устройстве, а также степень их полезности. Например, в проводниках потери мощности образуются, когда электрический ток частично превращается в тепловую энергию. Количество этих потерь зависит от сопротивления проводника, они не являются составной частью полезной работы.

Существует разница, выраженная формулой ∆Q=A-Q, наглядно отображающей потери мощности. Здесь очень хорошо просматривается зависимость между ростом потерь мощности и сопротивлением проводника. Наиболее ярким примером служит лампа накаливания, КПД у которой не превышает 15%. Остальные 85% мощности превращаются в тепловое, то есть в инфракрасное излучение.

Что такое КПД источника тока

Рассмотренный коэффициент полезного действия всей электрической цепи, позволяет лучше понять физическую суть КПД источника тока, формула которого также состоит из различных величин.

В процессе перемещения электрических зарядов по замкнутой электрической цепи, источником тока выполняется определенная работа, которая различается как полезная и полная. Во время совершения полезной работы, источника тока перемещает заряды во внешней цепи. При полной работе, заряды, под действием источника тока, перемещаются уже по всей цепи.

В виде формул они отображаются следующим образом:

  • Полезная работа — Аполез = qU = IUt = I2Rt.
  • Полная работа – Аполн = qε = Iεt = I2(R +r)t.

На основании этого, можно вывести формулы полезной и полной мощности источника тока:

  • Полезная мощность – Рполез = Аполез /t = IU = I2R.
  • Полная мощность – Рполн = Аполн/t = Iε = I2(R + r).

В результате, формула КПД источника тока приобретает следующий вид:

  • η = Аполез/ Аполн = Рполез/ Рполн = U/ε = R/(R + r).

Максимальная полезная мощность достигается при определенном значении сопротивления внешней цепи, в зависимости от характеристик источника тока и нагрузки. Однако, следует обратить внимание на несовместимость максимальной полезной мощности и максимального коэффициента полезного действия.

Исследование мощности и КПД источника тока

Коэффициент полезного действия источника тока зависит от многих факторов, которые следует рассматривать в определенной последовательности.

Для определения величины тока в электрической цепи, в соответствии с законом Ома, существует следующее уравнение: i = E/(R + r), в котором Е является электродвижущей силой источника тока, а r – его внутренним сопротивлением. Это постоянные величины, которые не зависят от переменного сопротивления R. С их помощью можно определить полезную мощность, потребляемую электрической цепью:

  • W1 = i x U = i2 x R. Здесь R является сопротивлением потребителя электроэнергии, i – ток в цепи, определяемый предыдущим уравнением.

Таким образом, значение мощности с использованием конечных переменных будет отображаться в следующем виде: W1 = (E2 x R)/(R + r).

Поскольку сила тока представляет собой промежуточную переменную, то в этом случае функция W1(R) может быть проанализирована на экстремум. С этой целью нужно определить значение R, при котором величина первой производной полезной мощности, связанная с переменным сопротивлением (R) будет равной нулю: dW1/dR = E2 x [(R + r)2 – 2 x R x (R + r)] = E2 x (Ri + r) x (R + r – 2 x R) = E2(r – R) = 0 (R + r)4 (R + r)4 (R + r)3

Из данной формулы можно сделать вывод, что значение производной может быть нулевым лишь при одном условии: сопротивление приемника электроэнергии (R) от источника тока должно достичь величины внутреннего сопротивления самого источника (R => r). В этих условиях значение коэффициента полезного действия η будет определяться как соотношение полезной и полной мощности источника тока – W1/W2. Поскольку в максимальной точке полезной мощности сопротивление потребителя энергии источника тока будет таким же, как и внутреннее сопротивление самого источника тока, в этом случае КПД составит 0,5 или 50%.

Задачи на мощность тока и КПД

Ссылка на основную публикацию
Adblock
detector